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Many full term births in a hospital require induction of labor. Induction succeeds in most 
cases but fails in a few. In case the induction fails, a Cesarean is done for delivery. This 
involves pain, time and money but also requires mental preparedness. 

 
It would be nice for both the woman and family and the attending obstetrician to anticipate 
a cesarean delivery on the basis of patient characteristics. The traditional method is to 
compute Bishop score based on dilatation, effacement, consistency and position. Other 
parameters that influence the success of induction of labor are maternal age, parity, BMI 
and amniotic fluid index. A study was carried out in n =166 cases with pre labor rupture of 
membrane to find if the duration since rupture can help in predicting the cesarean delivery. 
Although the study was prospective but sensitivity and specificity were calculated for 
different durations of rupture. The data obtained are shown in Table 1. 

 
Table 1: Sensitivity and (1 – specificity) for Cesarean delivery at different duration of 

rupture of membrane 
 

Duration (hr) greater 
than or equal to 

Sensitivity 1 - specificity 

.00 1.000 1.000 

.63 1.000 .976 

.88 1.000 .969 

1.25 1.000 .890 

1.75 1.000 .866 

2.13 1.000 .819 

2.38 1.000 .811 

2.75 1.000 .780 

3.25 1.000 .717 

3,75 1.000 .709 

4.50 1.000 .646 

5.13 .971 .583 

5.38 .971 .575 

5.75 .971 .551 

6.25 .914 .378 

6.75 .914 .346 

7.13 .857 .291 

7.38 .857 .283 

7.75 .857 .276 

8.25 .800 .189 
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8.75 .800 .181 

9.25 .743 .110 

9.75 .743 .102 

10.25 .543 .039 

10.75 .543 .031 

11.50 .457 .024 

12.50 .400 .008 

13.50 .343 .000 

14.50 .286 .000 

15.50 .257 .000 

16.50 .200 .000 

17.50 .171 .000 

18.50 .143 .000 

19.50 .114 .000 

20.25 .057 .000 

21.50 .000 .000 
 
 

The ROC curve obtained by plot at different cut-offs is shown in Figure 1. A statistical 
software found that the area under the curve is C = 0.898 with SE = 0.029 and 95% CI 
from 0.841 to 0.956. 
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FIGURE 1: ROC Curve of duration since rupture membrane for Cesarean delivery 

 
It seems from the ROC that duration since rupture of membrane itself is a good indicator to 
anticipate Cesarean delivery. The best cut-off that maximizes (sensitivity + specificity) is 
8.25 hours. At this duration, the sensitivity is 0.80 and specificity is 0.81 (1 – specificity = 
0.19). 

 
Although not shown above, the Bishop score was not found to be as good an indicator of 
impending cesarean  as was duration since rupture in this example. Otherwise also, 
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Bishop’s score is subjective and nonreproducible because of higher inter- and intra- 
observer variability. 

 
The example illustrates how a statistical tool such as ROC can be effectively used for 
medical decisions. The example is illustrative only and should not be construed to mean 
that duration since rupture can solely be used to anticipate cesarean. For this, studies in 
different locales are needed. 

 
For those interested, the details of ROC curve are as follows. 

 

DETAILS 

Medical tests play a vital role in modern medicine not only for confirming the presence 
of disease but also to rule out the disease in individual patient. A test test with two 
outcome categories such as test+ and test- is known as dichotomous, whereas more 
than two categories such as positive, indeterminate and negative called polytomous 
test. The validity of a dichotomous test compared with the gold standard is determined 
by sensitivity and specificity. These two are components that measure the inherent 
validity of a test. For details of sensitivity and specificity, see 
http://www.medicalbiostatistics.com/Medical_Docs/Sensitivity-specificity.pdf. These require 

that the disease status is already known and the ability of the test to correctly identify 
positives and negatives is assessed. Thus, sensitivity and specificity do not assess 
diagnostic efficiency of the tests as made out in certain texts. 

 

A test is called continuous when it yields numeric values such as bilirubin level and 
nominal when it yields categories such as Mantoux test. Sensitivity and specificity can 
be calculated in both cases but ROC curve is applicable only for continuous test or at 
least ordinal with many categories. 

 

The receiver operating characteristic (ROC) curve is the plot that displays the full picture 
of trade-off between the sensitivity (true positive rate) and (1- specificity) (false positive 
rate) across a series of cut-off points. Area under the ROC curve is considered as an 
effective measure of inherent validity of a diagnostic test. This curve is useful in (i) 
evaluating the discriminatory ability of a test to correctly pick up diseased and non- 
diseased subjects; (ii) finding optimal cut-off point to least misclassify diseased and non- 
diseased subjects; (iii) comparing efficacy of two or more medical tests for assessing 
the same disease; and (iv) comparing two or more observers measuring the same test 
(inter-observer variability). 

 
 

Non-parametric and parametric methods to obtain area under the ROC curve 
 
Statistical softwares provide non-parametric and parametric methods for obtaining the 
area under ROC curve. The user has to make a choice. The following details may help. 

http://www.medicalbiostatistics.com/Medical_Docs/Sensitivity-specificity.pdf
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Non-parametric methods are distribution-free and the resulting area under the ROC 
curve is called empirical. First such method uses trapezoidal rule. If sensitivity and 
specificity are denoted by sn and sp, respectively, the trapezoidal rule calculates the 
area by joining the points (sn, 1 – sp) at each interval value of the continuous test and 
draws a straight line joining the x-axis. This forms several trapezoids and their area can 
be easily calculated and summed. Another non-parametric method uses Mann-Whitney 
statistics, also known as Wilcoxon rank-sum statistic and the c-index for calculating 
area. Both these non-parametric methods of estimating AUC estimate have been found 
equivalent (1). 

 
Parametric methods are used when the statistical distribution of test values in diseased 
and non-diseased is known. Binormal distribution is commonly used for this purpose. 
This is applicable when both diseased and non-diseased test values follow normal 
distribution. If data are actually binormal or a transformation such as log, square or Box- 
Cox makes the data binormal then the relevant parameters can be easily estimated by 
the means and variances of test values in diseased and non-diseased subjects. For 
details, see (2). 

 

The choice of method to calculate AUC for continuous test values essentially depends 
upon availability of statistical software. Binormal method produces the smooth ROC 
curve, further statistics can be easily calculated but gives biased results when data are 
degenerate and distribution is bimodal (3-4). When software for both parametric and 
non-parametric methods is available, conclusion should be based on the method that 
yields greater precision of estimate of inherent validity, namely, of AUC. 

 
 

Interpretation of ROC curve 
 
Total area under ROC curve is a single index for measuring the performance a test. The 
larger the AUC, the better is overall performance of the medical test to correctly identify 
diseased and non-diseased subjects. Equal AUCs of two tests represents similar overall 
performance of tests but this does not necessarily mean that both the curves are 
identical. They may cross each other. 

 

Figure 1 depicts three different ROC curves. Considering the area under the curve, test 
A is better than both B and C, and the curve is closer to the perfect discrimination. Test 
B has good validity and test C has moderate. 
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Figure 1: Three ROC curves with different areas under the curve 

 
Figure 2(a) has hypothetical ROC curves of two medical tests A and B applied on the 
same subjects to assess the same disease. Test A and B have nearly equal area but 
cross each other. Test A performs better than test B where high sensitivity is required, 
and test B performed better than A when high specificity is needed. 

 
(a) (b) 
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1- Specificity (False positive rate) 

Figure 2: (a) Two ROC curves crossing each other but with nearly same area 
(b) Illustration of partial area under the ROC curve 

 
In such cases and in some other situations, the interest may be restricted to specific 
values of sensitivity or specificity. You may be interested in a test with high specificity as 
for a disease with grave prognosis (cancer). Then the interest will be in test B and that 
too for specificity ≥ 0.65 or (1 – specificity) < 0.35. In that case, the area of interest is 
1+2 as shown in Figure 2(b). This is called partial area under the curve. Software such 
as STATA calculates this also and, if you want for easy interpretability, you can 
standardize it to 1 by considering total area of box upto (1 – specificity) equal to 1. 

 
 

Methods to find the ‘optimal’ threshold point 
 
Three criteria are used to find optimal threshold point from ROC curve. First two 
methods give equal weight to sensitivity and specificity and impose no ethical, cost, and 
no prevalence constraints. The third criterion considers cost which mainly includes 
financial cost for correct and false diagnosis, cost of discomfort to person caused by 
treatment, and cost of further investigation when needed. This method is rarely used in 
medical literature because it is difficult to estimate the respective costs and prevalence 
is often difficult to assess. These three criteria are known as points on curve closest to 
the (0, 1), Youden index, and minimize cost criterion, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SN= Sensitivity,PSSpecificity 
 

Figure 3: Finding best cut-off from the ROC curve 
 
If sn and sp denote sensitivity and specificity, respectively, the distance between the 
point (0, 1) and any point on the ROC curve is d = √[(1 – sn)

2 + (1 – sp)
2]. To obtain the 
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optimal cut-off point to discriminate the disease with non-disease subject, calculate this 
distance for each observed cut-off point, and locate the point where the distance is 
minimum. Most of the ROC analysis softwares calculate the sensitivity and specificity at 
all the observed cut-off points allowing you to do this exercise. 

 
The second is Youden index that maximizes the vertical distance from line of equality to 
the point [x, y] as shown in Figure 3. The x represents (1- specificity) and y represents 
sensitivity. In other words, the Youden index J is the point on the ROC curve which is 
farthest from line of equality (diagonal line). The main aim of Youden index is to 
maximize the difference between TPR (sn) and FPR (1 – sp) and little algebra yields J = 
max[sn+sp]. The value of J for continuous test can be located by doing a search of 
plausible values where sum of sensitivity and specificity can be maximum. Youden 
index is more commonly used criterion because this index reflects the intension to 
maximize the correct classification rate and is easy to calculate. Many authors advocate 
this criterion. 

 
 

Biases that can affect the ROC curve results 
 
We describe more prevalent biases in this section that affect the sensitivity and 
specificity, and thereby the ROC curve. 

1. Gold standard: Validity of gold standard is important— ideally it should be error 
free and the medical test under review should be independent of the gold 
standard as this can increase the area under the curve spuriously. The gold 
standard can be clinical follow-up, surgical verification, biopsy or autopsy or in 
some cases opinion of panel of experts. When gold standard is imperfect, such 
as peripheral smear for malaria parasites, sensitivity and specificity of the test 
are would be affected. 

2. Verification bias: This occurs when all disease subjects do not receive the same 
gold standard for some reason such as economic constraints and clinical 
considerations. For example, in evaluating the breast bone density as screening 
test for diagnosis of breast cancer and only those women who have higher value 
of breast bone density are referred for biopsy, and those with lower value but 
suspected are followed clinically. In this case, verification bias would 
overestimate the sensitivity of breast bone density test. 

3. Selection bias: Selection of right patients with and without diseased is important 
because some tests produce prefect results in severely diseased group but fail to 
detect mild disease. 

4. Test review bias: The clinician should be blind to the actual diagnosis while 
evaluating a test. A known positive disease subject or known non-disease 
subject may influence the test result. 

5. Inter-observer bias: In the studies where observer abilities are important in 
diagnosis, such as for bone density assessment through MRI, experienced 
radiologist and junior radiologist may differ. If both are used in the same study, 
the observer bias is apparent. 
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6. Co-morbidity bias: Sometimes patients have other types of known or unknown 
diseases which may affect the positivity or negativity of test. For example, 
NESTROFT (Naked eye single tube red cell osmotic fragility test), used for 
screening of thalassaemia in children, shows good sensitivity in patients without 
any other hemoglobin disorders but also produces positive results when other 
hemoglobin disorders are present. 

7. Uninterpretable test results: This bias occurs when test provide results which 
can not be interpreted and clinician excludes these subjects from the analysis. 
This results in overestimation of validity of the test. 

 

It is difficult to rule out all the biases but you should be aware and try to minimize them. 

 

Sample size 
 
Adequate power of the study depends upon the sample size. Power is probability that a 
statistical test will indicate significant difference where certain pre-specified difference is 
actually present. In a survey of eight leading journals, only two out of 43 studies 
reported a prior calculation of sample size in diagnostic studies (5). In estimation set-up, 
adequate sample size ensures the study will yield the estimate with desired precision. 
Small sample size produces imprecise or inaccurate estimate, while large sample size 
is wastage of resources especially when the test is expensive. 

 
Table 2: Sample size formula for estimating sensitivity and specificity and area under 
the ROC curve 

 
Sl.no. Problem Formula Description of symbol used 

1 Estimating the 
sensitivity of test  

SN = Anticipated sensitivity 
Prev = Prevalence of disease in population 
can be obtained from previous literature or 
pilot study 

= required absolute precision on either 
side of the sensitivity 

2 Estimating the 
specificity of test 

 

SN = Anticipated specificity 
Prev = Prevalence of disease in population 
can be obtained from previous literature or 
pilot study 

= required absolute precision on either 
side of the specificity. 

3 Estimating the 
area under the 
ROC curve 

 
 

= number of diseased 

subjects 

n = (1+k), k is ratio of 
prevalence of non-disease to 
disease subjects 

V(AUC) = Anticipated variance function for 
area under ROC curve (This is not the 
variance. For large samples, Variance of 
AUC = V(AUC)/No. of positives) 

= required absolute precision on either 
side of the area under the curve. 

 is a standard normal value and α is the confidence level.    = 1.645 for α=0.10 and = 

1.96 for α=0.05. 
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The sample size formula depends upon whether interest is in estimation or in testing of 
the hypothesis. Table 2 provides the required formula for estimation of sensitivity, 
specificity and AUC. These are based on the binormal distribution or asymptotic 
assumption (large sample theory) which is generally used for sample size calculation. 

 
Variance of AUC can be obtained by using parametric and non-parametric methods for 
inserting into formula 3 in Table 2. This may also be available in literature on previous 
studies. If no previous study is available, a pilot study is done to get some workable 
estimates to calculate sample size. For pilot study data, appropriate statistical software 
can provide estimate of this variance. 

 

Formulas of sample size for testing hypothesis on sensitivity-specificity or the AUC with 
a pre-specified value and for comparison on the same subjects or different subjects are 
complex. Refer (2) for details. 

 
There are many more topics for interested reader to explore such as combining the 
multiple ROC curve for meta-analysis, ROC analysis to predict more than one 
alternative, ROC analysis in the clustered environment, and for tests repeated over 
time, etc. For these see (2,6). 
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